积分表及公式推导
(一)含有 ax+b 的积分
- ∫ax+bdx=a1ln∣ax+b∣+C
∫ax+bdx=a1∫ax+bd(ax+b)=a1ln∣ax+b∣+C
- ∫(ax+b)μdx=a(μ+1)1(ax+b)μ+1+C(μ=1)
∫(ax+b)μdx=a1∫(ax+b)μd(ax+b)=a(μ+1)1(ax+b)μ+1+C(μ=1)
- ∫ax+bxdx=a21(ax+b−bln∣ax+b∣)+C
====∫ax+bxdx∫(a1−ab⋅ax+b1)dxa1x−ab⋅a1ln∣ax+b∣+C′a21(ax−bln∣ax+b∣)+C′a21(ax+b−bln∣ax+b∣)+C
- ∫ax+bx2dx=a31[21(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C
====∫ax+bx2dx∫ax+ba21(ax+b)2−a22b(ax+b)+a2b2dxa21∫(ax+b)dx−a22b∫dx+a2b2∫ax+b1dxa21(21ax2+bx)−a22bx+a3b2ln∣ax+b∣+Ca31[21(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C
- ∫x(ax+b)dx=−b1lnxax+b+C
===∫x(ax+b)dx∫(xb1−ax+bba)dxb1ln∣x∣−b1ln∣ax+b∣+C−b1lnxax+b+C
- ∫x2(ax+b)dx=−bx1+b2alnxax+b+C
===∫x2(ax+b)dx∫(x2b1+x−b2a+ax+bb2a2)dxb1∫x21dx−b2a∫x1dx+b2a2∫ax+b1dx−bx1+b2alnxax+b+C
- ∫(ax+b)2xdx=a21[ln∣ax+b∣+ax+bb]+C
===∫(ax+b)2xdx∫(ax+ba1−(ax+b)2ab)dxa1∫ax+b1dx−ab∫(ax+b)21dxa21[ln∣ax+b∣+ax+bb]+C
- ∫(ax+b)2x2dx=a31(ax+b−2bln∣ax+b∣−ax+bb2)+C
====∫(ax+b)2x2dx∫(ax+b)2a21(ax+b)2−a22b(ax+b)+a2b2dxa21∫dx−a22b∫ax+b1dx+a2b2∫(ax+b)21dxa31(ax−2bln∣ax+b∣−ax+bb2)+C′a31(ax+b−2bln∣ax+b∣−ax+bb2)+C
- ∫x(ax+b)2dx=b(ax+b)1−b21lnxax+b+C
===∫x(ax+b)2dx∫(xb21−ax+bb2a+(ax+b)2−ba)dxb21∫x1dx−b2a∫ax+b1dx−ba∫(ax+b)21dxb(ax+b)1−b21lnxax+b+C
(二)含有 ax+b 的积分
- ∫ax+bdx=3a2(ax+b)3+C
==∫ax+bdxa1∫ax+bd(ax+b)3a2(ax+b)3+C
- ∫xax+bdx=15a22(3ax−2b)(ax+b)3+C
====∫xax+bdx∫[(a1(ax+b)−ab)ax+b]dxa1∫(ax+b)23dx−ab∫ax+bdx5a22(ax+b)25−3a2b(ax+b)23+C15a22(3ax−2b)(ax+b)3+C
- ∫x2ax+bdx=105a32(15a2x2−12abx+8b2)(ax+b)3+C
====∫x2ax+bdx∫[a21(ax+b)2−a22b(ax+b)+a2b2]ax+bdxa21∫(ax+b)25dx−a22b∫(ax+b)23dx+a2b2∫(ax+b)21dx7a32(ax+b)27−5a34b(ax+b)25+3a32b2(ax+b)23105a32(15a2x2−12abx+8b2)(ax+b)3+C
- ∫ax+bxdx=3a22(ax−2b)ax+b+C
====∫ax+bxdx∫ax+ba1(ax+b)−aba1∫ax+bdx−ab∫ax+b1dx3a22(ax+b)23−a22b(ax+b)21+C3a22(ax−2b)ax+b+C
- ∫ax+bx2dx=15a32(3a2x2−4abx+8b2)ax+b+C
====∫ax+bx2dx∫ax+ba21(ax+b)2−a22b(ax+b)+a2b2dxa21∫(ax+b)23dx−a22b∫(ax+b)21dx+a2b2∫(ax+b)−21dx5a32(ax+b)25−3a34b(ax+b)23+a32b2(ax+b)21+C15a32(3a2x2−4abx+8b2)ax+b+C
- ∫xax+bdx=⎩⎨⎧b1lnax+b+bax+b−b+C−b2arctan−bax+b+C(b>0)(b<0)
令 u=ax+b、则 dx=a2udu
当 b>0 时
∫xax+bdx=2∫u2−b1du=2∫(u−b)(u+b)1du=b1∫(u−b1−u+b1)du=b1lnu+bu−b+C==b1lnax+b+bax+b−b+C
当 b<0 时
∫xax+bdx=2∫u2+(−b)1du=−b2∫1+(−bu)1du=−b2arctan−bu+C=−b2arctan−bax+b+C
- ∫x2ax+bdx=−bxax+b−2ba∫xax+bdx
====∫x2ax+bdx∫(xax+b−ba+x2b1ax+b)dx−ba∫xax+b1dx−b1∫xax+bd(x1)−ba∫xax+b1dx−bxax+b+2ba∫xax+b1dx−bxax+b−2ba∫xax+bdx
- ∫xax+bdx=2ax+b+b∫xax+bdx
- ∫x2ax+bdx=−xax+b+2a∫xax+bdx
(三)含有 x2±a2 的积分
-
∫x2+a2dx=a1arctanax+C
-
∫(x2+a2)ndx=2(n−1)a2(x2+a2)n−1x+2(n−1)a22n−3∫(x2+a2)n−1dx
-
∫x2−a2dx=2a1lnx+ax−a+C
(四)含有 ax2+b (a>0) 的积分
-
∫ax2+bdx=⎩⎨⎧ab1arctanbax+C2−ab1lnax+−bax−−b+C(b>0)(b<0)
-
∫ax2+bxdx=2a1ln∣ax2+b∣+C
-
∫ax2+bx2dx=ax−ab∫ax2+bdx
-
∫x(ax2+b)dx=2b1lnax2+bx2+C
-
∫x2(ax2+b)dx=−bx1−ba∫ax2+bdx
-
∫x3(ax2+b)dx=2b2alnx2ax2+b−2bx21+C
-
∫(ax2+b)2dx=2b(ax2+b)x+2b1∫ax2+bdx
(五)含有 ax2+bx+c (a>0) 的积分
-
∫ax2+bx+cdx=⎩⎨⎧4ac−b22arctan4ac−b22ax+b+C(b2<4ac)b2−4ac1ln2ax+b+b2−4ac2ax+b−b2−4ac+C(b2>4ac)
-
∫ax2+bx+cxdx=2a1ln∣ax2+bx+c∣−2ab∫ax2+bx+cdx
(六)含有 x2+a2 (a>0) 的积分
-
∫x2+a2dx=arshax+C1=ln(x+x2+a2)+C
-
∫(x2+a2)3dx=a2x2+a2x+C
-
∫x2+a2xdx=x2+a2+C
-
∫(x2+a2)3xdx=−x2+a21+C
-
∫x2+a2x2dx=2xx2+a2−2a2ln(x+x2+a2)+C
-
∫(x2+a2)3x2dx=−x2+a2x+ln(x+x2+a2)+C
-
∫xx2+a2dx=a1ln∣x∣x2+a2−a+C
-
∫x2x2+a2dx=−a2xx2+a2+C
-
∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
-
∫(x2+a2)3dx=8x(2x2+5a2)x2+a2+83a4ln(x+x2+a2)+C
-
∫xx2+a2dx=31(x2+a2)3+C
-
∫x2x2+a2dx=8x(2x2+a2)x2+a2−8a4ln(x+x2+a2)+C
-
∫xx2+a2dx=x2+a2+aln∣x∣x2+a2−a+C
-
∫x2x2+a2dx=−xx2+a2+ln(x+x2+a2)+C
(七)含有 x2−a2 (a>0) 的积分
-
∫x2−a2dx=∣x∣xarcha∣x∣+C1=ln∣x+x2−a2∣+C
-
∫(x2−a2)3dx=−a2x2−a2x+C
-
∫x2−a2xdx=x2−a2+C
-
∫(x2−a2)3xdx=−x2−a21+C
-
∫x2−a2x2dx=2xx2−a2+2a2ln∣x+x2−a2∣+C
-
∫(x2−a2)3x2dx=−x2−a2x+ln∣x+x2−a2∣+C
-
∫xx2−a2dx=a1arccos∣x∣a+C
-
∫x2x2−a2dx=a2xx2−a2+C
-
∫x2−a2dx=2xx2−a2−2a2ln∣x+x2−a2∣+C
-
∫(x2−a2)3dx=8x(2x2−5a2)x2−a2+83a4ln∣x+x2−a2∣+C
-
∫xx2−a2dx=31(x2−a2)3+C
-
∫x2x2−a2dx=8x(2x2−a2)x2−a2−8a4ln∣x+x2−a2∣+C
-
∫xx2−a2dx=x2−a2−aarccos∣x∣a+C
-
∫x2x2−a2dx=−xx2−a2+ln∣x+x2−a2∣+C
(八)含有 a2−x2 (a>0) 的积分
-
∫a2−x2dx=arcsinax+C
-
∫(a2−x2)3dx=a2a2−x2x+C
-
∫a2−x2xdx=−a2−x2+C
-
∫a2−x2x2dx=−2xa2−x2+2a2arcsinax+C
-
∫(a2−x2)3x2dx=a2−x2x−arcsinax+C
-
∫xa2−x2dx=a1ln∣x∣a−a2−x2+C
-
∫x2a2−x2dx=−a2xa2−x2+C
-
∫a2−x2dx=2xa2−x2+2a2arcsinax+C
-
∫(a2−x2)3dx=8x(5a2−2x2)a2−x2+83a4arcsinax+C
-
∫xa2−x2dx=−31(a2−x2)3+C
-
∫x2a2−x2dx=8x(2x2−a2)a2−x2+8a4arcsinax+C
-
∫xa2−x2dx=a2−x2+alnxa−a2−x2+C
-
∫x2a2−x2dx=−xa2−x2−arcsinax+C
含有 ( \sqrt{ax^2+bx+c} ) (( a>0 )) 的积分
-
∫ax2+bx+cdx=a1ln2ax+b+2aax2+bx+c+C
-
∫ax2+bx+cdx=4a2ax+bax2+bx+c+8a34ac−b2ln2ax+b+2aax2+bx+c+C
-
∫ax2+bx+cxdx=a1ax2+bx+c−2a3bln2ax+b+2aax2+bx+c+C
-
∫c+bx−ax2dx=a1arcsinb2+4ac2ax−b+C
-
∫c+bx−ax2dx=4a2ax−bc+bx−ax2+8a3b2+4acarcsinb2+4ac2ax−b+C
-
∫c+bx−ax2xdx=−a1c+bx−ax2+2a3barcsinb2+4ac2ax−b+C
含有 ( \sqrt{\dfrac{x-a}{x-b}} ) 或 ( \sqrt{(x-a)(b-x)} ) 的积分
-
∫x−bx−adx=(x−b)x−bx−a+(b−a)ln(∣x−a∣+∣x−b∣)+C
-
∫b−xx−adx=(x−b)b−xx−a+(b−a)arcsinb−ax−a+C
-
∫(x−a)(b−x)dx=2arcsinb−ax−a+C(a<b)
-
∫(x−a)(b−x)dx=42x−a−b(x−a)(b−x)+4(b−a)2arcsinb−ax−a+C(a<b)
含有三角函数的积分
-
∫sinxdx=−cosx+C
-
∫cosxdx=sinx+C
-
∫tanxdx=−ln∣cosx∣+C
-
∫cotxdx=ln∣sinx∣+C
-
∫secxdx=lntan(4π+2x)+C=ln∣secx+tanx∣+C
-
∫cscxdx=lntan2x+C=ln∣cscx−cotx∣+C
-
∫sec2xdx=tanx+C
-
∫csc2xdx=−cotx+C
-
∫secxtanxdx=secx+C
-
∫cscxcotxdx=−cscx+C
-
∫sin2xdx=2x−41sin2x+C
-
∫cos2xdx=2x+41sin2x+C
-
∫sinnxdx=−n1sinn−1xcosx+nn−1∫sinn−2xdx
-
∫cosnxdx=n1cosn−1xsinx+nn−1∫cosn−2xdx
-
∫sinnxdx=−n−11⋅sinn−1xcosx+n−1n−2∫sinn−2xdx
-
∫cosnxdx=n−11⋅cosn−1xsinx+n−1n−2∫cosn−2xdx
-
∫cosmxsinnxdx=m+n1cosm−1xsinn+1x+m+nm−1∫cosm−2xsinnxdx=−m+n1cosm+1xsinn−1x+m+nn−1∫cosmxsinn−2xdx
-
∫sinaxcosbxdx=−2(a+b)1cos(a+b)x−2(a−b)1cos(a−b)x+C
-
∫sinaxsinbxdx=−2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
-
∫cosaxcosbxdx=2(a+b)1sin(a+b)x+2(a−b)1sin(a−b)x+C
-
∫a+bsinxdx=a2−b22arctana2−b2tan2x+C(a2>b2)
-
∫a+bsinxdx=b2−a21lna2−b2tan2x+a2−b2tan2x+C(a2<b2)
-
∫a+bcosxdx=a+b2a−ba+barctan(a+ba−btan2x)+C(a2>b2)
-
∫a+bcosxdx=a+b1b−aa+blna2−b2tan2x+a2−b2tan2x+C(a2<b2)
-
∫a2cos2x+b2sin2xdx=ab1arctan(abtanx)+C
-
∫a2cos2x−b2sin2xdx=2ab1lnbtanx−abtanx+a+C
-
∫xsinaxdx=a21sinax−a1xcosax+C
-
∫x2sinaxdx=−a1x2cosax+a22xsinax+a32cosax+C
-
∫xcosaxdx=a21cosax+a1xsinax+C
-
∫x2cosaxdx=a1x2sinax+a22xcosax−a32sinax+C
含有反三角函数的积分(其中 ( a>0 ))
-
∫arcsinaxdx=xarcsinax+a2−x2+C
-
∫xarcsinaxdx=(2x2−4a2)arcsinax+4xa2−x2+C
-
∫x2arcsinaxdx=3x3arcsinax+91(x2+2a2)a2−x2+C
-
∫arccosaxdx=xarccosax−a2−x2+C
-
∫xarccosaxdx=(2x2−4a2)arccosax−4xa2−x2+C
-
∫x2arccosaxdx=3x3arccosax−91(x2+2a2)a2−x2+C
-
∫arctanaxdx=xarctanax−2aln(a2+x2)+C
-
∫xarctanaxdx=21(a2+x2)arctanax−2ax+C
-
∫x2arctanaxdx=3x3arctanax−6ax2+6a3ln(a2+x2)+C
含有指数函数的积分
-
∫axdx=lna1ax+C
-
∫eaxdx=a1eax+C
-
∫xeaxdx=a21(ax−1)eax+C
-
∫xneaxdx=a1xneax−an∫xn−1eaxdx
-
∫xaxdx=lnaxax−(lna)21ax+C
-
∫xnaxdx=lna1xnax−lnan∫xn−1axdx
-
∫eaxsinbxdx=a2+b21eax(asinbx−bcosbx)+C
-
∫eaxcosbxdx=a2+b21eax(acosbx+bsinbx)+C
-
∫eaxsinnbxdx=a2+b2n21eaxsinn−1bx(asinbx−nbcosbx)+a2+b2n2n(n−1)b2∫eaxsinn−2bxdx
-
∫eaxcosnbxdx=a2+b2n21eaxcosn−1bx(acosbx+nbsinbx)+a2+b2n2n(n−1)b2∫eaxcosn−2bxdx
含有对数函数的积分
-
∫lnxdx=xlnx−x+C
-
∫xlnxdx=ln∣lnx∣+C
-
∫xnlnxdx=n+11xn+1(lnx−n+11)+C
-
∫(lnx)ndx=x(lnx)n−n∫(lnx)n−1dx
-
∫xm(lnx)ndx=m+11xm+1(lnx)n−m+1n∫xm(lnx)n−1dx
含有双曲函数的积分
-
∫shxdx=chx+C
-
∫chxdx=shx+C
-
∫thxdx=lnchx+C
-
∫sh2xdx=−2x+41sh2x+C
-
∫ch2xdx=2x+41sh2x+C
(十六)定积分
-
∫−ππcosnxdx=∫−ππsinnxdx=0
-
∫−ππcosmxsinnxdx=0
-
∫−ππcosmxcosnxdx={0,π,m=nm=n
-
∫−ππsinmxsinnxdx={0,π,m=nm=n
-
∫0πsinmxsinnxdx=∫0πcosmxcosnxdx={0,2π,m=nm=n
-
In=∫02πsinnxdx=∫02πcosnxdx,In=nn−1In−2