求定积分:01xbxalnxdx\displaystyle\int_{0}^{1}\dfrac{x^b-x^a}{\ln x}\mathrm{d}x,其中 a,b>1a, b>-1

I(t)=01xt1lnxdxI(t)=\displaystyle\int_{0}^{1}\dfrac{x^t-1}{\ln x}\mathrm{d}x,接下来考虑求该定积分,首先两边对 tt 求导

I(t)=ddx01xt1lnxdx=01txt1lnxdx=x1+t1+t01=11+t\begin{align} I'(t) & =\dfrac{\mathrm{d}}{\mathrm{d}x}\int_{0}^{1}\dfrac{x^t-1}{\ln x}\mathrm{d}x\\ & = \int_{0}^{1}\dfrac{\partial}{\partial t}\dfrac{x^t-1}{\ln x}\mathrm{d}x\\ & = \left. \frac{x^{1+t}}{1+t}\right|_{0}^{1}\\ & = \dfrac{1}{1+t} \end{align}

I(t)=I(t)dt=ln1+t+CI(t)=\int I'(t)\mathrm{d}t=\ln|1+t|+C

接下来求 CC,因为 I(0)=0I(0)=0,所以 ln1+C=0\ln 1+C=0,从而 C=0C=0,因此 I(t)=lnt+1I(t)=\ln|t+1|,则

01xbxalnxdx=I(b)I(a)=ln1+b1+a=lnb+1a+1\int_{0}^{1}\dfrac{x^b-x^a}{\ln x}\mathrm{d}x=I(b)-I(a)=\ln\left|\dfrac{1+b}{1+a}\right|=\ln\dfrac{b+1}{a+1}

求定积分:0π2ln(a2sin2x+b2cos2x)dx\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(a^2\sin^2x+b^2\cos^2x)\mathrm{d}x,其中 a,b>0a, b>0

为了巩固上一题的解法,我向 AI 要来了这题,这题的解法与上题有相似但不完全一样

I(a)=0π2ln(a2sin2x+b2cos2x)dxI(a)=\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(a^2\sin^2x+b^2\cos^2x)\mathrm{d}x,同样地,两边对 aa 求导

I(a)=0π22asin2xa2sin2x+b2cos2xdx=0π22atan2xa2tan2x+b2dxI'(a)=\int_{0}^{\frac{\pi}{2}}\dfrac{2a\sin^2 x}{a^2\sin^2x+b^2\cos^2 x}\mathrm{d}x=\int_{0}^{\frac{\pi}{2}}\frac{2a\tan^2 x}{a^2\tan^2 x+b^2}\mathrm{d}x

t=tanxt=\tan x,则 dx=dt1+t2\mathrm{d}x=\dfrac{\mathrm{d}t}{1+t^2}

I(a)=0+2at2(a2t2+b2)(1+t2)dt=2ab2a2b20+1a2t2+b2dt+2aa2b20+11+t2dt=2ab2a2b21abarctanatb0++2aa2b2arctant0+=π(ab)a2b2==πa+b\begin{align} I'(a) & =\int_{0}^{+\infty}\dfrac{2at^2}{(a^2t^2+b^2)(1+t^2)}\mathrm{d}t\\ & = -\frac{2ab^2}{a^2-b^2}\int_{0}^{+\infty}\frac{1}{a^2t^2+b^2}\mathrm{d}t+\frac{2a}{a^2-b^2}\int_{0}^{+\infty}\frac{1}{1+t^2}\mathrm{d}t\\ & = -\frac{2ab^2}{a^2-b^2}\left.\frac{1}{ab}\arctan\frac{at}{b}\right|_{0}^{+\infty}+\frac{2a}{a^2-b^2}\left.\arctan t\right|_0^{+\infty}\\ & = \frac{\pi(a-b)}{a^2-b^2}\\= & = \frac{\pi}{a+b} \end{align}

I(a)=πa+bda=πlna+b+CI(a)=\int\frac{\pi}{a+b}\mathrm{d}a=\pi\ln|a+b|+C

I(b)=0π2ln(b2)dx=πlnbI(b)=\displaystyle\int_{0}^{\frac{\pi}{2}}\ln(b^2)\mathrm{d}x=\pi\ln b,则 C=πlnbπln2b=πln2C=\pi \ln b-\pi\ln|2b|=-\pi\ln 2

所以

0π2ln(a2sin2x+b2cos2x)dx=πlna+b2\int_{0}^{\frac{\pi}{2}}\ln(a^2\sin^2x+b^2\cos^2x)\mathrm{d}x=\pi\ln\dfrac{a+b}{2}

求定积分:xsin3xdx\displaystyle\int x\sin^3x\mathrm{d}x

求不定积分:sec3xdx\displaystyle\int\sec^3x\mathrm{d}x

首先凑微分 secxd(tanx)\displaystyle\int\sec x\mathrm{d}(\tan x),接下来用分部积分公式

sec3xdx=secxd(tanx)=secxtanxtan2xsecxdx=secxtanx(sec2x1)secxdx=secxtanxsec3xdx+secxdx\begin{align} & \int\sec^3 x\mathrm{d}x\\ = & \int\sec x\mathrm{d}(\tan x)\\ = & \sec x\tan x-\int\tan^2 x\sec x\mathrm{d}x\\ = & \sec x\tan x-\int(\sec^2x -1)\sec x\mathrm{d}x\\ = & \sec x\tan x-\int\sec^3x\mathrm{d}x+\int\sec x\mathrm{d}x \end{align}

则有

sec3xdx=12(secxtanx+secxdx)\int\sec^3 x\mathrm{d}x=\frac{1}{2}\left(\sec x\tan x+\int\sec x\mathrm{d}x\right)

那么只要求出 secxdx\displaystyle\int\sec x\mathrm{d}x 求行了,这里我们设 u=secx+tanxu=\sec x+\tan x,则

du=secx(secx+tanx)dx=usecxdx\mathrm{d}u=\sec x(\sec x+\tan x)\mathrm{d}x=u\sec x\mathrm{d}x

secxdx=duu\sec x\mathrm{d}x=\dfrac{\mathrm{d}u}{u},则

secxdx=duu=lnu=lnsecx+tanx+C\int\sec x\mathrm{d}x=\int\frac{\mathrm{d}u}{u}=\ln|u|=\ln|\sec x+\tan x|+C

代回即可得到

secxdx=12(secxtanx+lnsecx+tanx)+C\int\sec x\mathrm{d}x=\frac{1}{2}\left(\sec x\tan x+\ln|\sec x+\tan x|\right)+C

求不定积分:sin2nxsinxdx\displaystyle\int\frac{\sin 2nx}{\sin x}\mathrm{d}x

注意到

sin2nx=k=0n[sin2kxsin(2k2)x]=2sinxk=0ncos(2k2)x\begin{align} \sin 2nx & =\sum_{k=0}^{n}[\sin2kx-\sin(2k-2)x]\\ & = 2\sin x\sum_{k=0}^{n}\cos(2k-2)x \end{align}

sin2nxsinxdx=2k=0ncos(2k2)xdx=2k=0ncos(2k2)xdx=2k=0nsin(2k1)x2k1+C\begin{align} \int\frac{\sin 2nx}{\sin x}\mathrm{d}x & =\int2\sum_{k=0}^{n}\cos(2k-2)x\mathrm{d}x\\ & =2\sum_{k=0}^{n}\int\cos(2k-2)x\mathrm{d}x\\ & =2\sum_{k=0}^{n}\frac{\sin(2k-1)x}{2k-1}+C \end{align}

同样的,我们还可以通过这种方法求得 sin(2n+1)xsinxdx=x+2k=1nsin2kx2k+C\displaystyle\int\dfrac{\sin(2n+1)x}{\sin x}\mathrm{d}x=x+2\sum_{k=1}^{n}\dfrac{\sin2kx}{2k}+C

求定积分:0π1cos(nx)1cosxdx\displaystyle\int_{0}^{\pi}\dfrac{1-\cos(nx)}{1-\cos x}\mathrm{d}x,其中 nNn\in\N

首先利用半角公式将形式简化

0π1cos(nx)1cosxdx=0πsin2nx2sin2x2dx=x=2u20π2sin2nusin2udu\int_{0}^{\pi}\dfrac{1-\cos(nx)}{1-\cos x}\mathrm{d}x=\int_{0}^{\pi}\frac{\sin^2\frac{nx}{2}}{\sin^2\frac{x}{2}}\mathrm{d}x\xlongequal{x=2u}2\int_{0}^{\frac{\pi}{2}}\frac{\sin^2nu}{\sin^2u}\mathrm{d}u

I(n)=0π2sin2nusin2udxI(n)=\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\sin^2nu}{\sin^2u}\mathrm{d}x,利用三角平方差公式可得

I(n)I(n1)=0π2sinusin[(2n1)u]sin2udu=0π2sin[(2n1)u]sinuduI(n)-I(n-1)=\int_{0}^{\frac{\pi}{2}}\frac{\sin u\sin\left[(2n-1)u\right]}{\sin^2 u}\mathrm{d}u=\int_{0}^{\frac{\pi}{2}}\frac{\sin\left[(2n-1)u\right]}{\sin u}\mathrm{d}u

想要消去分母的 sinu\sin u,我们需要再做差

[I(n+1)I(n)][I(n)I(n1)]=0π2sin[(2n+1)u]sin[(2n1)u]sinudx=0π22cos2nusinusinudu=20π2cos2nudu=0\begin{align} [I(n+1)-I(n)]-[I(n)-I(n-1)] & =\int_{0}^{\frac{\pi}{2}}\frac{\sin\left[(2n+1)u\right]-\sin\left[(2n-1)u\right]}{\sin u}\mathrm{d}x\\ & =\int_{0}^{\frac{\pi}{2}}\frac{2\cos 2nu\sin u}{\sin u}\mathrm{d}u\\ & = 2\int_{0}^{\frac{\pi}{2}}\cos 2nu\mathrm{d}u\\ & = 0 \end{align}

I(n)I(n1)=I(1)I(0)=π2I(n)-I(n-1)=I(1)-I(0)=\dfrac{\pi}{2},则根据等差数列的通项公式有

I(n)=π2nI(n)=\dfrac{\pi}{2}n

0π1cos(nx)1cosxdx=2I(n)=nπ\boxed{\int_{0}^{\pi}\dfrac{1-\cos(nx)}{1-\cos x}\mathrm{d}x=2I(n)=n\pi}

实际上,此题和上一题是同一类题,因此我们也可以采用上一题的解法

首先仍然采用半角公式和换元,此处省略, 直接计算 0π2sin2nusin2udx\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\sin^2nu}{\sin^2u}\mathrm{d}x

0π2sin2nusin2udu=0π2i=1n[sin2(iu)sin2(i1)u]sin2udu=0π2sinui=1nsin(2i1)usin2udu=0π2i=1n{j=1i[sin(2j1)usin(2j3)u]+sinu}sinudu=0π2i=1n{2j=1i[cos(2j2)sinu]+sinu}sinudu=0π2[2i=1nj=1icos(2j2)u+n]du=2i=1nj=1i0π2cos(2j2)udu+nπ2=nπ2\begin{align} \displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\sin^2nu}{\sin^2u}\mathrm{d}u & = \int_{0}^{\frac{\pi}{2}}\frac{\sum_{i=1}^{n}[\sin^2(iu)-\sin^2(i-1)u]}{\sin^2 u}\mathrm{d}u\\ & =\int_{0}^{\frac{\pi}{2}}\frac{\sin u\sum_{i=1}^{n}\sin(2i-1)u}{\sin ^2u}\mathrm{d}u\\ & =\int_{0}^{\frac{\pi}{2}}\frac{\sum_{i=1}^{n}\left\{\sum_{j=1}^{i}\left[\sin(2j-1)u-\sin(2j-3)u\right]+\sin u\right\}}{\sin u}\mathrm{d}u\\ & =\int_{0}^{\frac{\pi}{2}}\frac{\sum_{i=1}^{n}\left\{2\sum_{j=1}^{i}\left[\cos(2j-2)\sin u\right]+\sin u\right\}}{\sin u}\mathrm{d}u\\ & =\int_{0}^{\frac{\pi}{2}}\left[2\sum_{i=1}^{n}\sum_{j=1}^{i}\cos(2j-2)u+n\right]\mathrm{d}u\\ & =2\sum_{i=1}^{n}\sum_{j=1}^{i}\int_{0}^{\frac{\pi}{2}}\cos(2j-2)u\mathrm{d}u+\dfrac{n\pi}{2}\\ & =\dfrac{n\pi}{2} \end{align}

因此

0π1cos(nx)1cosxdx=nπ\boxed{\int_{0}^{\pi}\dfrac{1-\cos(nx)}{1-\cos x}\mathrm{d}x=n\pi}

求不定积分: eaxcosbxdx\displaystyle\int e^{ax}\cos bx\mathrm{d}xeaxsinbxdx\displaystyle\int e^{ax}\sin bx\mathrm{d}x

首先对两个积分分别使用分部积分法

eaxcosbxdx=1aeaxcosbx+baeaxsinbxdxeaxsinbxdx=1aeaxsinbxbaeaxcosbxdx\begin{align} & \int e^{ax}\cos bx\mathrm{d}x=\frac{1}{a}e^{ax}\cos bx+\frac{b}{a}\int e^{ax}\sin bx\mathrm{d}x\\ & \int e^{ax}\sin bx\mathrm{d}x=\frac{1}{a}e^{ax}\sin bx-\frac{b}{a}\int e^{ax}\cos bx\mathrm{d}x \end{align}

这里发现,我们得到了关于这两个积分的二元一次方程组,解这个方程组可得

eaxcosbxdx=eax(acosbx+bsinbx)a2+b2+Ceaxsinbxdx=eax(asinbxbcosbx)a2+b2+C\boxed{ \begin{align} & \int e^{ax}\cos bx\mathrm{d}x=\frac{e^{ax}(a\cos bx+b\sin bx)}{a^2+b^2}+C\\ & \int e^{ax}\sin bx\mathrm{d}x=\frac{e^{ax}(a\sin bx-b\cos bx)}{a^2+b^2}+C \end{align} }

求不定积分:cos2xsinx+cosxdx\displaystyle\int\dfrac{\cos^2 x}{\sin x+\cos x}\mathrm{d}x

先来看第一种解法,这种解法的关键是要想到使用半角公式

cos2xsinx+cosxdx=121+cos2xsinx+cosxdx=121+(cosx+sinx)(cosxsinx)sinx+cosxdx=12(1sinx+cosx+cosxsinx)dx=12[1sinx+cosxdx+(cosxsinx)dx]=12[12sin(x+π4)dx+sinx+cosx]=12[12csc(x+π4)dx+sinx+cosx]=12[12lncsc(x+π4)cot(x+π4)+sinx+cosx]+C\begin{align*} \int \frac{\cos^2 x}{\sin x + \cos x} \,\mathrm{d}x &= \frac{1}{2} \int \frac{1 + \cos 2x}{\sin x + \cos x} \,\mathrm{d}x \\ &= \frac{1}{2} \int \frac{1 + (\cos x + \sin x)(\cos x - \sin x)}{\sin x + \cos x} \,\mathrm{d}x \\ &= \frac{1}{2} \int \left( \frac{1}{\sin x + \cos x} + \cos x - \sin x \right) \,\mathrm{d}x \\ &= \frac{1}{2} \left[ \int \frac{1}{\sin x + \cos x} \,\mathrm{d}x + \int (\cos x - \sin x) \,\mathrm{d}x \right] \\ &= \frac{1}{2} \left[ \int \frac{1}{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)} \,\mathrm{d}x + \sin x + \cos x \right] \\ &= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \int \csc\left(x + \frac{\pi}{4}\right) \,\mathrm{d}x + \sin x + \cos x \right] \\ &= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \ln \left| \csc\left(x + \frac{\pi}{4}\right) - \cot\left(x + \frac{\pi}{4}\right) \right| + \sin x + \cos x \right] + C \end{align*}

第二种解法与上一题有些相似之处(利用对偶式)

I=cos2xsinx+cosxdxI=\displaystyle\int\dfrac{\cos^2 x}{\sin x+\cos x}\mathrm{d}xJ=sin2xsinx+cosxdxJ=\displaystyle\int\dfrac{\sin^2 x}{\sin x+\cos x}\mathrm{d}x

然后分别计算 I+JI+JIJI-J

I+J=dxsinx+cosx=12lncsc(x+π4)cot(x+π4)+C1IJ=(cosxsinx)dx=sinx+cosx+C2\begin{align} & I+J = \int\frac{\mathrm{d}x}{\sin x+\cos x}=\frac{1}{\sqrt{2}}\ln\left|\csc\left(x+\frac{\pi}{4}\right)-\cot\left(x+\frac{\pi}{4}\right)\right|+C_1\\ & I-J = \int(\cos x-\sin x)\mathrm{d}x=\sin x+\cos x+C_2 \end{align}

两式相加即可得到 II