1. 计算极限:limx01xlnex+e2x++enxn\displaystyle\lim_{x\to 0}\dfrac{1}{x}\ln\dfrac{e^x+e^{2x}+\cdots+e^{nx}}{n}

这题最大的坑就是给了一个等比数列求和,但是发现求和没用,这题应该将原式转成未定式后使用洛必达

limx01xlnex+e2x++enxn=limx0ln(ex+e2x+enx)lnnx=limx0ex+2e2x+nenxex+e2x+enx=1+2++nn=n+12\begin{align} & \lim_{x\to 0}\dfrac{1}{x}\ln\dfrac{e^x+e^{2x}+\cdots+e^{nx}}{n}\\ = & \lim_{x\to 0}\dfrac{\ln(e^x+e^{2x}\cdots + e^{nx})-\ln n}{x}\\ = & \lim_{x\to 0}\dfrac{e^x+2e^{2x}\cdots + ne^{nx}}{e^x+e^{2x}\cdots + e^{nx}}\\ = & \dfrac{1+2+\cdots +n}{n} \\ = & \dfrac{n+1}{2} \end{align}

  1. 计算极限:limnsin(n2+a2π)\displaystyle\lim_{n\to \infty}\sin(\sqrt{n^2+a^2}\cdot\pi)

遇到三角函数,可以考虑一下诱导公式

limnsin(n2+a2π)=(1)nsin(πn2+a2nπ) =(1)nlimnsin(a2πn2+a2+n)=(1)nlimna2πn2+a2+n=0\begin{align} & \lim_{n\to \infty}\sin(\sqrt{n^2+a^2}\cdot\pi)\\ = & (-1)^n\sin(\pi\sqrt{n^2+a^2}-n\pi)\\\ = & (-1)^n\lim_{n\to\infty}\sin\left(\dfrac{a^2\pi}{\sqrt{n^2+a^2}+n}\right)\\ = & (-1)^n\lim_{n\to\infty}\dfrac{a^2\pi}{\sqrt{n^2+a^2}+n}\\ = & 0 \end{align}

  1. 计算极限:limn(an+bn2)n\displaystyle\lim_{n\to\infty}\left(\dfrac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n

这题只需要连续运用恒等式 x=elnxx=e^{\ln x} 即可

limn(an+bn2)n=limnenlnan+bn2=elimnnan+bn22=elimnne1nlna12+limnne1nlnn12=elnab2=ab\begin{align} & \lim_{n\to\infty}\left(\dfrac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n\\ = & \lim_{n\to\infty}e^{n\ln\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}}\\ = & e^{\lim_{n\to\infty}n\frac{\sqrt[n]{a}+\sqrt[n]{b}-2}{2}}\\ = & e^{\lim_{n\to\infty}n\frac{e^{\frac{1}{n}\ln a-1}}{2}+\lim_{n\to\infty}n\frac{e^{\frac{1}{n}\ln n-1}}{2}}\\ = & e^{\frac{\ln ab}{2}}\\ = & \sqrt{ab} \end{align}

  1. 计算极限:limx1x21lnx\displaystyle\lim_{x\to -1}\dfrac{x^2-1}{\ln|x|}

这题其实并不难,只要我们把绝对值去掉,或者如果我们知道 dlnxdx=1x\dfrac{\mathrm{d}\ln|x|}{\mathrm{d}x}=\dfrac{1}{x},使用洛必达就能很快解决这题(具体解法不做赘述)

使用等价无穷小的解法也不难,这里我们给出等价无穷小的解法

limx1=x21lnx=limx1(x1)(x+1)x1=2\begin{align} & \lim_{x\to -1}=\dfrac{x^2-1}{\ln |x|}\\ = & \lim_{x\to-1}\dfrac{(|x|-1)(|x|+1)}{|x|-1}\\ = & 2 \end{align}

  1. 计算极限:limx+x[(x+2)ln(x+2)2(x+1)ln(x+1)+xlnx]\displaystyle\lim_{x\to +\infty}x[(x+2)\ln(x+2)-2(x+1)\ln(x+1)+x\ln x]
  1. 计算极限:limx0(x2+1+x)1x\displaystyle\lim_{x\to 0}(\sqrt{x^2+1}+x)^\frac{1}{x}

这题取对数后用洛必达也非常简单,这里还是给出用等价无穷小的做法

limx0(x2+1+x)1x=limx0e1xln(x2+1+x)=limx0ex2+1+x1x=limx0e2xx[x2+1(x1)]=e\begin{align} & \lim_{x\to 0}\left(\sqrt{x^2+1}+x\right)^\frac{1}{x}\\ = & \lim_{x\to 0}e^{\frac{1}{x}\ln\left(\sqrt{x^2+1}+x\right)}\\ = & \lim_{x\to 0}e^{\frac{\sqrt{x^2+1}+x-1}{x}}\\ = & \lim_{x\to 0}e^{\frac{2x}{x\left[\sqrt{x^2+1}-(x-1)\right]}}\\ = & e \end{align}

  1. 计算极限:limx0[tan(π4x)]cotx\displaystyle\lim_{x\to 0}\left[\tan\left(\dfrac{\pi}{4}-x\right)\right]^{\cot x}

limx0[tan(π4x)]cotx=limx0ecotxln(1tanx1+tanx)=limx0ecotxln(12tanx1+tanx)=limx0e2cotxtanx1+tanx=e2\begin{align} & \lim_{x\to 0}\left[\tan\left(\dfrac{\pi}{4}-x\right)\right]^{\cot x}\\ = & \lim_{x\to 0}e^{\cot x\ln\left(\frac{1-\tan x}{1+\tan x}\right)}\\ = & \lim_{x\to 0}e^{\cot x\ln\left(1-\frac{2\tan x}{1+\tan x}\right)}\\ = & \lim_{x\to 0}e^{-2\cot x\frac{\tan x}{1+\tan x}}\\ = & e^{-2} \end{align}

  1. 计算极限:limxπ2(sinx)tan2x\displaystyle\lim_{x\to \frac{\pi}{2}}(\sin x)^{\tan^2 x}

这题也并不难,直接取对数也能很快做出来。这里 xπ2x\to \frac{\pi}{2} 是我们见的比较少的,所以这里可以也可以考虑换元

limxπ2(sinx)tan2x=limt0(cost)cot2t=limt0ecot2tlncost=limt0et22tan2t=e12\begin{align} & \lim_{x\to \frac{\pi}{2}}(\sin x)^{\tan^2 x}\\ = & \lim_{t\to 0}(\cos t)^{\cot^2 t}\\ = & \lim_{t\to 0}e^{\cot^2 t\ln\cos t}\\ = & \lim_{t\to 0}e^{-\frac{t^2}{2\tan^2 t}}\\ = & e^{-\frac{1}{2}} \end{align}

  1. 计算极限:limx0(1+xax1+xbx)1x2\displaystyle\lim_{x\to 0}\left(\dfrac{1+xa^x}{1+xb^x}\right)^{\frac{1}{x^2}}

这题和第 3 题有点相似,连续运用恒等式 x=elnxx=e^{\ln x} 即可

limx0(1+xax1+xbx)1x2=limx0e1x2ln(1+xax1+xbx)=limx0eaxbxx(1+xbx)=limx0eexlnaexlnbx(1+xbx)=limx0elnalnb1+xbx=ab\begin{align} & \lim_{x\to 0}\left(\dfrac{1+xa^x}{1+xb^x}\right)^{\frac{1}{x^2}}\\ = & \lim_{x\to 0}e^{\frac{1}{x^2}\ln\left(\frac{1+xa^x}{1+xb^x}\right)}\\ = & \lim_{x\to 0}e^{\frac{a^x-b^x}{x(1+xb^x)}}\\ = & \lim_{x\to 0}e^{\frac{e^{x\ln a}-e^{x\ln b}}{x(1+xb^x)}}\\ = & \lim_{x\to 0}e^{\frac{\ln a-\ln b}{1+xb^x}}\\ = & \frac{a}{b} \end{align}

  1. 计算极限:limx0(ax+bx2)1x\displaystyle\lim_{x\to 0}\left(\dfrac{a^x+b^x}{2}\right)^{\frac{1}{x}}

这题与第 9 题非常相似,答案是 ab\sqrt{ab},详情这里不做赘述

  1. 计算极限:limx+[x1+x(1+x)xxe]\displaystyle\lim_{x\to +\infty}\left[\dfrac{x^{1+x}}{(1+x)^x}-\dfrac{x}{e}\right]

先把指数收在一起,会出现第二个重要极限(注意这时不能直接代换),然后通分出现 \infty-\infty 型的未定式,故可以采用倒代换

limx+[x1+x(1+x)xxe]=limx+[x(1+1x)xxe]=limx+exx(1+1x)xe(1+1x)x=limx+exx(1+1x)xe2=limt0+e(1+t)1tte2=limx0+1e1tln(1+t)1te=limt0+11tln(1+t)te=limt0+1t12t2+o(t2)tte=12e\begin{align} & \lim_{x\to +\infty}\left[\dfrac{x^{1+x}}{(1+x)^x}-\dfrac{x}{e}\right]\\ = & \lim_{x\to+\infty}\left[\frac{x}{\left(1+\dfrac{1}{x}\right)^x}-\dfrac{x}{e}\right]\\ = & \lim_{x\to+\infty}\frac{ex-x\left(1+\dfrac{1}{x}\right)^x}{e\left(1+\dfrac{1}{x}\right)^x}\\ = & \lim_{x\to+\infty}\frac{ex-x\left(1+\dfrac{1}{x}\right)^x}{e^2}\\ = & \lim_{t\to0^+}\frac{e-(1+t)^\frac{1}{t}}{te^2}\\ = & \lim_{x\to0^+}\frac{1-e^{\frac{1}{t}\ln(1+t)-1}}{te}\\ = & \lim_{t\to0+}\frac{1-\dfrac{1}{t}\ln(1+t)}{te}\\ = & \lim_{t\to 0^+}\frac{1-\frac{t-\frac{1}{2}t^2+o(t^2)}{t}}{te}\\ = & \frac{1}{2e} \end{align}

  1. 计算极限:limx+(1xax1a1)1x(a>0,a1)\displaystyle\lim_{x\to+\infty}\left(\dfrac{1}{x}\cdot\dfrac{a^x-1}{a-1}\right)^{\frac{1}{x}}\quad(a>0,a\neq 1)

这题并不难,有点不同的是 aa 的范围给的比较大,所以要对 aa 进行分类讨论

0<a<10<a<1

limx+(1xax1a1)1x=limx+elnx+ln(1ax)ln(1a)x=limx+eln(1ax)x=limx+eaxx=limx+eaxlna=1\begin{align} & \lim_{x\to+\infty}\left(\dfrac{1}{x}\cdot\dfrac{a^x-1}{a-1}\right)^{\frac{1}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{-\ln x+\ln(1-a^x)-\ln(1-a)}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{\ln(1-a^x)}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{-a^x}{x}}\\ = & \lim_{x\to+\infty}e^{-a^x\ln a}\\ = & 1 \end{align}

a>1a>1

limx+(1xax1a1)1x=limx+elnx+ln(ax1)ln(a1)x=limx+eln(ax1)x=limx+elnax(1ax)x=limx+exlna+ln(1ax)x=limx+elna+ln(1ax)x=a\begin{align} & \lim_{x\to+\infty}\left(\dfrac{1}{x}\cdot\dfrac{a^x-1}{a-1}\right)^{\frac{1}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{-\ln x+\ln(a^x-1)-\ln(a-1)}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{\ln(a^x-1)}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{\ln a^x(1-a^{-x})}{x}}\\ = & \lim_{x\to+\infty}e^{\frac{x\ln a+\ln(1-a^{-x})}{x}}\\ = & \lim_{x\to+\infty}e^{\ln a+\frac{\ln(1-a^{-x})}{x}}\\ = & a \end{align}

综上

limx+(1xax1a1)1x={1,0<a<1a,a>1\lim_{x\to+\infty}\left(\dfrac{1}{x}\cdot\dfrac{a^x-1}{a-1}\right)^{\frac{1}{x}}=\begin{cases}1,\quad 0<a<1\\a, \quad a>1\end{cases}

计算极限:limx+[(x+a)1+1x+ax1+1x]\displaystyle\lim_{x\to+\infty}\left[(x+a)^{1+\frac{1}{x+a}}-x^{1+\frac{1}{x}}\right]

这题看出了拉格朗日中值定理就结束了,并不难,就当是练练求导吧

f(x)=x1+1xf(x)=x^{1+\frac{1}{x}},则 (x+a)1+1x+ax1+1x=f(x+a)f(x)=af(ξ)(x+a)^{1+\frac{1}{x+a}}-x^{1+\frac{1}{x}}=f(x+a)-f(x)=af'(\xi),其中 ξ\xi 介于 xxx+ax+a 之间(注意这里不知道 aa 的正负)

f(x)=e(1+1x)lnx(lnxx2+1x+1x2)f'(x)=e^{\left(1+\frac{1}{x}\right)\ln x}\left(-\dfrac{\ln x}{x^2}+\dfrac{1}{x}+\frac{1}{x^2}\right)

limx+[(x+a)1+1x+ax1+1x] =limx+e(1+1ξ)lnξ(lnξξ2+1ξ+1ξ2)a=limξ+ξ(lnξξ2+1ξ+1ξ2)a=limξ+(lnξξ+1+1ξ)a=a\begin{align} & \lim_{x\to+\infty}\left[(x+a)^{1+\frac{1}{x+a}}-x^{1+\frac{1}{x}}\right]\\\ = & \lim_{x\to+\infty}e^{\left(1+\frac{1}{\xi}\right)\ln \xi}\left(-\dfrac{\ln \xi}{\xi^2}+\dfrac{1}{\xi}+\frac{1}{\xi^2}\right)a\\ = & \lim_{\xi\to+\infty}\xi\left(-\dfrac{\ln \xi}{\xi^2}+\dfrac{1}{\xi}+\frac{1}{\xi^2}\right)a\\ = & \lim_{\xi\to+\infty}\left(-\frac{\ln\xi}{\xi}+1+\frac{1}{\xi}\right)a\\ = & a \end{align}

计算极限:limx3sin(xx)sin(3x)3xx33x\displaystyle\lim_{x\to 3}\dfrac{\sin(x^x)-\sin(3^x)}{3^{x^x}-3^{3^x}}

上面看了一道拉格朗日中值定理的题,我们再来看看这道柯西中值定理的题

f(x)=sinxf(x)=\sin xg(x)=3xg(x)=3^x,则 sin(xx)sin(3x)3xx33x=f(xx)f(3x)g(xx)g(3x)=f(ξ)g(ξ)\dfrac{\sin(x^x)-\sin(3^x)}{3^{x^x}-3^{3^x}}=\dfrac{f(x^x)-f(3^x)}{g(x^x)-g(3^x)}=\dfrac{f'(\xi)}{g'(\xi)},其中,ξ\xi 介于 3x3^xxxx^x 之间,故 ξ33(x3)\xi\to 3^3(x\to 3)(夹逼定理),则

limx3sin(xx)sin(3x)3xx33x=limx3cosξ3ξln3=cos27327ln3\begin{align} & \lim_{x\to 3}\dfrac{\sin(x^x)-\sin(3^x)}{3^{x^x}-3^{3^x}}\\ = & \lim_{x\to 3}\frac{\cos\xi}{3^\xi\ln 3}\\ = & \frac{\cos 27}{3^{27}\ln 3} \end{align}

计算极限:limn1n[12+1+22+2++n2+nn(n+1)2]\displaystyle\lim_{n\to\infty}\dfrac{1}{n}\left[\sqrt{1^2+1}+\sqrt{2^2+2}+\cdots+\sqrt{n^2+n}-\dfrac{n(n+1)}{2}\right]

计算极限:limn1+2++nn+1+n+2++n+n\displaystyle\lim_{n\to\infty}\dfrac{1+\sqrt{2}+\cdots+\sqrt{n}}{\sqrt{n+1}+\sqrt{n+2}+\cdots+\sqrt{n+n}}